Finite Element Investigation of the Real Life Loadings on the Ti-27Nb Hip Bone Implant

  • Muhammad Amjad International Islamic university Islamabad Pakistan
  • Abdur Rafai International Islamic University
  • Saeed Badshah International Islamic University Islamabad, Pakistan
  • Rafiullah Khan IIUI, Islamabad
  • Sajjad Ahmad International Islamic University
Keywords: Ti-27Nb, Hip Implant, Finite element analysis, von-Mises stress

Abstract

Bone is an important part of all vertebrates. It support the body and homes the marrow. The bone may be damaged by number of reasons. The objective of this paper is the investigation of the real life loadings on the Ti-27nb hip bone implant using FEA.  The model of the implant was created using CREO PARAMETRIC software. Two weight categories 75Kg and 100 Kg with four different daily life activities stand up, sit down, knee bend and walking were considered in this study. The FEA analysis was performed using commercial FEA software ANSYS. The implant model was meshed using tetrahedral element type. The simulation result show that maximum stress occurs at the neck of the implant for each loading case. The stress level was approximately equal to the strength of Ti-27Nb in 100 Kg, stand up position case.

Author Biographies

Muhammad Amjad, International Islamic university Islamabad Pakistan

Assistant Professor

Department of MEchanical Engineering 

International Islamic University

Islamabad

Abdur Rafai, International Islamic University

Lab Engineer

Department of MEchanical Engineering 

International Islamic University

Islamabad

Saeed Badshah, International Islamic University Islamabad, Pakistan

Head of Deparment / Associate Professor

Department of Mechanical Engineering 

Faculty of Engineering and Technology,

International Islamic University

Islamabad, Pakistan

Rafiullah Khan, IIUI, Islamabad

Assistant Professor 

Department of Mechanical Engineering

IIUI, Islamabad

Pakistan

Sajjad Ahmad, International Islamic University

Assistant Professor

Department of Mechanical Engineering 

Faculty of Engineering and Technology,

International Islamic University

Islamabad, Pakistan

References

1. Banks, W. A., & Kastin, A. J. (1989). Aluminum-Induced neurotoxicity: Alterations in membrane function at the blood-brain barrier. Neuroscience and Biobehavioral Reviews, 13(1), 47–53. https://doi.org/10.1016/S0149-7634(89)80051-X
2. Bergmann, G., Bender, A., Dymke, J., Duda, G., & Damm, P. (2016). Standardized loads acting in hip implants. PLoS ONE, 11(5), 1–23. https://doi.org/10.1371/journal.pone.0155612
3. Bergmann, G., Bergmann, G., Deuretzabacher, G., Deuretzabacher, G., Heller, M., Heller, M., … Duda, G. N. (2001). Hip forces and gait patterns from rountine activities. Journal of Biomechanics, 34, 859–871. https://doi.org/http://dx.doi.org/10.1016/S0021-9290(01)00040-9
4. Briant-Evans, T. W., Norton, M. R., & Fern, E. D. (2007). Fractures of Corin “Taper-Fit” CDH stems used in “cement-in-cement” revision total hip replacement. Journal of Bone and Joint Surgery - British Volume, 89–B(3), 393–395. https://doi.org/10.1302/0301-620X.89B3.18200
5. Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., & Djordjevic, B. (2016). Finite element modeling of hip implant static loading. Procedia Engineering, 149(June), 257–262. https://doi.org/10.1016/j.proeng.2016.06.664
6. Čolić, K., Sedmak, A., Legweel, K., Milošević, M., Mitrović, N., Mišković, Ž., & Hloch, S. (2017). Experimental and numerical research of mechanical behaviour of titanium alloy hip implant. Tehnicki Vjesnik, 24(3), 709–713. https://doi.org/10.17559/TV-20160219132016
7. Davis, J. (2003). Handbook of Materials for Medical Devices. ASM International, 205–216. https://doi.org/10.1361/hmmd2003p001
8. Diseases, N. I. of A. and M. and S. (2016). What Is a Hip Replacement. Retrieved from https://www.niams.nih.gov/health_info/Hip_Replacement/
9. Knight, S. R., Aujla, R., & Biswas, S. P. (2011). 100 Years of Operative History Er Ci Us E on Er Al, 3, 2–4. https://doi.org/10.4081/or.2011.16
10. Kurtz, S. M., Lau, E., Ong, K., Zhao, K., Kelly, M., & Bozic, K. J. (2009). Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clinical Orthopaedics and Related Research, 467(10), 2606–2612. https://doi.org/10.1007/s11999-009-0834-6
11. Park, J. B. (2000). “Hip Joint Prosthesis Fixation-Problems and Possible Solutions.” The Biomedical Engineering Handbook (Second Edi). CRC Press LLC.
12. Ridzwan, M. I. Z., Shuib, S., Hassan, A. Y., Shokri, A. A., & Mohammad Ibrahim, M. N. (2007). Problem of stress shielding and improvement to the hip implant designs: A review. Journal of Medical Sciences. https://doi.org/10.3923/jms.2007.460.467
13. Semlitsch, M. F., Weber, H., Streicher, R. M., & Schön, R. (1992). Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials, 13(11), 781–788. https://doi.org/10.1016/0142-9612(92)90018-J
14. Senalp, A. Z., Kayabasi, O., & Kurtaran, H. (2007). Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials and Design, 28(5), 1577–1583. https://doi.org/10.1016/j.matdes.2006.02.015
15. Shigley, J. E., Mischke, C. R., & Budynas, R. G. (2002). Shigle’s Mechanical Engineering Design - 9th Ed. Mechanical Engineering (Vol. New York,). https://doi.org/10.1007/s13398-014-0173-7.2
16. Tensile Properties. (n.d.). Retrieved from https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Mechanical/Tensile.htm
17. van Humbeeck, J. (1997). Shape Memory Materials : State of the Art and Requirements for Future Applications. Le Journal de Physique IV, 7(C5), C5-3-C5-12. https://doi.org/10.1051/jp4:1997501
Published
2018-12-31
How to Cite
Amjad, M., Rafai, A., Badshah, S., Khan, R., & Ahmad, S. (2018, December 31). Finite Element Investigation of the Real Life Loadings on the Ti-27Nb Hip Bone Implant. JOURNAL OF ENGINEERING AND APPLIED SCIENCES, 37(2). https://doi.org/https://doi.org/10.25211/jeas.v37i2.2074